冒险解谜游戏中文网 ChinaAVG
标题:
解谜的艺术(2) 迷宫
[打印本页]
作者:
deducemath
时间:
2010-6-12 04:01
标题:
解谜的艺术(2) 迷宫
本帖最后由 deducemath 于 2011-4-7 22:54 编辑
3 o0 ^* t" P1 S+ O) w
9 x1 V# d5 r- E" d% k) m$ ^$ x* `
迷宫注记
-
那些千回百转的乐趣
0 S h6 b7 a) c. V
3 |/ d2 O5 m6 M* F c* A4 J' F$ r
“黄蓉向郭靖打个手势,反向后行,庄中道路东转西绕,区区折折,尤其是转弯处的栏杆亭榭全然一模一样,几下一转,哪里还分辨得出东西南北……”
) H, N+ f& l7 u, E* ]; A d
——《射雕英雄传》第
13
回
f: U* [7 c$ o& [
美丽的古希腊
神话起源
7 j, U& i6 d& b- k! \' k
[attach]16465[/attach]
( ]9 H+ {: k+ ]5 k) Z) T$ k& f+ R
忒休斯的克里特之旅
文艺复兴佛罗伦萨画家作
现存于法国
Avignon
7 e! } g0 a, L" R; Q
9 u7 H. q2 j/ ~6 Y: @
米诺斯是克里特岛的国王,需向海神波塞冬献祭,苦于自己养的牲畜实在龌龊,于是请求海神赐予一头白牛,海神答允。因此牛身材毛色堪称美的典范,米诺斯不忍杀之,另找牛代替。海神震怒,附体于白牛,诱惑米诺斯的妻子,致使其产下牛首人身的怪物,即米诺陶洛斯。米诺斯建迷宫将其囚禁。祸不单行,米诺斯的儿子在雅典遇害,于是他强迫雅典每
9
年献
7
对少男少女,把他们关进迷宫作怪物之食。第
3
次进献时,雅典王子忒修斯亲自出马,此公修长俊美,米诺斯之女阿里阿德涅对其一见钟情。公主赠其金线团与宝剑,借助这两样宝物,王子杀死怪物后轻松走出迷宫并携公主与少男少女驾船逃走……(可以改编成
AVG
了。)
, E a: i$ |* g
2 f: u/ j0 w' {6 O
“所有的迷宫神话都以这样或那样的方式叙述了这四重故事:旅行、考验、启蒙和复活。”(《智慧之路——论迷宫》
P43
)
* e3 `, K$ O! {& A$ S0 J
x1 N0 Z. G( c; y; ]. Y- y
迷宫的描述性定义
:
拓扑结构为图
(
状态或位置用点表示,相邻则连边
)
,从起始点出发到终止点的路不明显,探索的过程存在一些障碍。
5 x5 k- I" Z8 H- z- l
! H! j. f9 G, F) B; O' P
广义的迷宫:
世界、人生的象征
棋类等博弈游戏
滑块谜题(如华容道)
拓扑解套谜题(如九连环
,状态图仅为一条简单的路,虽结构简单,实际操作起来却不平凡)
朝圣之旅
(
教堂迷宫
)
9 {0 e4 M; n9 Z0 C- i, U
北京圆明园有个黄花阵迷宫,为郎世宁设计,被毁后重建,如图:
6 \& p& Y" B' }0 a) R
[attach]16466[/attach]
# G3 c! ^$ G0 T+ V" S
使用迷宫的
推理或解谜小说
:
4 G& H$ T m4 y( {
% v0 e7 [6 G. [( f3 C" v1 x- g' h
1《迷宫馆的诱惑》
绫辻行人
日本推理小说家
(文学性差些)
) T6 b# E+ K7 t) l/ n# }
. Y' y+ N/ f& L) w- h
2
《迷宫案》
古利克(高罗佩)荷兰汉学家
(美妙的小说,收入《大唐狄公案》,迷宫形状为篆体字“虚空楼阁”,到达迷宫中心的的秘密在一幅画中。)
1 i* S" ^$ O* ~/ ?% P
+ V0 `' g! ?% p/ r$ e! V
3
《玫瑰的名字》
埃科
意大利知识分子
(有大量中世纪宗教文化,若算推理小说,最多二等)
( W& w+ @) j' p9 n; o
/ }4 @' ^6 Q$ H7 o0 x6 F, x8 R# p
博尔赫斯有名的短篇:
小径分叉的花园
: ~, I9 H3 }$ D, l
/ q/ i3 v3 c8 c) O# `
一个百科全书式的云南总督建造了一个谁也走不出的迷宫,后来被某汉学家揭示其实此迷宫是他留下的充满矛盾的小说手稿,小说中主人公面临不同的选择时选择了所有的可能性(类似于
AVG
的多线程设计)。“他认为时间有无数系列,背离的、汇合的和平行的时间织成一张不断增长、错综复杂的网。”
) Y* b# J4 R& g- h, L& k( ?
9 C6 C6 b' F5 b8 U! l, o
可以把红楼梦看做文学迷宫,不过这个迷宫是开放式的,没有终点的迷宫,至今还有很多人在寻找众多的可能性……
. Y# L5 `; j6 A9 q( |' Q, x
5 b6 I" M/ w* P
Mechanical Mazes
% B- W2 _+ d( N) t; t1 f' d+ Q
! \% l7 r6 N) ?" _/ g, {$ A
如果你把一些
Mechanical Puzzles
的状态图画出来,再分别将初始和终止状态节点标记为入口和出口,就得到了
Mechanical Mazes
。
马丁加德纳
90
岁生日时,世界各地的谜题大师们纷纷撰文致敬,这些精妙的小文集锦成书
《
A Lifetime of Puzzles: A Collection of Puzzles in Honor of Martin Gardner's 90th Birthday
》,其中
荷兰谜题大师
M.Oskar van Deventer
的文章就是论述
Mechanical Mazes
的。下面为文中三个截图,具体内容大家可以参看网上的电子书(不全)。
8 `$ G' Q: ?9 C; l7 q2 v
[attach]16510[/attach]
0 H Y0 V h( O1 f+ n
[attach]16511[/attach]
q7 F, S. y6 u) }
[attach]16512[/attach]
. G# n8 f/ A% I2 C
AVG
中的迷宫
5 m1 E; e2 u4 G( G# {+ u8 ]
塞伯利亚
1
花园迷宫,只可惜游戏没充分利用,主要作风景了。
' x+ C& T; g+ M D" |" P+ ?
[attach]16467[/attach]
7 e+ U$ f8 t- S! }; b
静物
1
机械蜘蛛谜题即为一动态迷宫,很不错的设计。
9 t( ]4 }9 Q5 z% w" |' M
[attach]16468[/attach]
, @( \( u% b. D' U3 T% @
静物
1
还有个简单下水道迷宫,走的时候只知道迷宫的局部信息。
# H! K+ U$ b; j$ c6 i
[attach]16469[/attach]
( a8 @' o$ P, K3 N; D! b
机械迷城里面的电梯锁就是经典的双马换位谜题,见加德纳的书《啊哈!灵机一动》。貌似有点复杂的棋盘图拓扑结构只不过一个简单的圈,在纸上换种画法谜题就很平凡了。
+ K2 s$ z' I9 U' b% [' g
[attach]16509[/attach]
0 j P& [, f+ }* u6 Q
米勒山庄疑案
4
也有个小迷宫,
走不对就被里面的怪物吃掉(很多电子游戏的迷宫
-
怪物模式来源于那个迷宫起源神话),虽然拿到了迷宫地图,可是看不懂。
' ]5 n6 m9 g# S5 D* C( U/ X8 y* m
) T& N" I! u$ ~: i7 z
童年的记忆碎片
9 q/ y1 _( V6 \, C2 Z4 a- U
. B/ m8 j2 l, A$ Q7 `* f: S
幽长狭窄的胡同,高低大小不一的红瓦屋顶,以及连接它们的一道道斑驳的砖墙与庭院树木,自然形成一个独特的空中迷宫。
我喜欢在这个迷宫中游荡,如同卡尔维诺《树上的男爵》。这种游荡不只含有冒险的性质,除了需要躲避某些不识趣的大人以及探索新的路线,有时可以躺下来呆看微风中的白云,有时帮邻居大妈采摘香椿树叶,有时偷几串葡萄或未成熟的小葫芦,而最具目的性的莫过于爬到邻居家玩红白机。当年玩的最多的大概为魂斗罗、双截龙和超级玛丽。超级玛丽最后一关(
8-4
)便是一个很微妙的迷宫,
(全局设计图
http://www.gamefaqs.com/nes/525243-super-mario-bros/faqs/54149
)攻略如下图
% ~) \/ ]' Y$ L/ Q# B; ?
[attach]16470[/attach]
- _# o+ L" G9 Y5 `: g
迷宫的数学
5 V1 R4 h3 }+ {4 d4 I
7 [( C0 c$ j) R* \0 C
维基百科的图片被封掉了,不知道猴年马月能恢复。将每个词条所在的网页看做一个有向图的节点,每个词条的解释当中含有很多其它词条的链接,在词条与其解释中出现的词条所在网页之间连有向边,得到一个很庞大的有向图。这个图应当含有一个巨大的连通分支(渗流现象),此连通分支的直径却很小(小世界现象)。不用搜索引擎,将初始所在词条的网页作为起始点,指定一个目标词条,则在它们之间找路的过程如同在迷宫中摸索。
0 Q# A' S1 N' i- O: P: n% P8 _- L% A
1 y9 N/ h" W) X; N
渗流理论(概率论与图论的交叉学科,主要研究临界现象)中的随机图可以看成一个随机迷宫。下面是
Marek Biskup
的
关于渗流簇上随机游动问题的
PPT
截图:
, ~' n. j2 O# x4 U/ O
[attach]16471[/attach]
, N# B" w% |7 n1 s: ]1 _: C! w2 T
考虑无限大的二维正方形格子图,每条边以概率1-p删除。若p较大,剩余图会包含一个无限大的连通子图,称其为随机迷宫。蜗牛在此迷宫中作随机游动,在适当的尺度变换下,运动轨迹收敛于布朗运动。
3 k6 E# B1 f3 b, t' [0 a0 X. I
, N+ g- c" V! w) W/ h0 [; j, k) L2 o0 f" ]
许多谜题的状态图极复杂,如同超级迷宫。例如,魔方的状态图
(
魔方置换群的
Cayley
图,参见
http://www.jaapsch.net/puzzles/cayley.htm
)
有
43252003274489856000
个顶点,每个顶点的度为
18
(基本旋转数),猜测其直径为
20
,也就是说,
任何一种魔方的初始状态都可以在
20
步内还原。
08
年
Tomas Rokicki
使用群论与计算机证明状态图直径大于等于
20
小于等于
22。
见
http://www.mathpuzzle.com/30November2008.html
08.8.19
添加材料
。
2010
年
7
月
Morley Davidson, John Dethridge, Herbert Kociemba, and Tomas Rokicki
最终彻底解决魔方问题
,“上帝之数”(
God
’
s Number
)为
20
。
见
http://www.cube20.org/
及
http://www.mathpuzzle.com/
10.8.9
材料。
/ d+ {/ i! B, @8 d- M! s) ?7 R
1 B. _' n- o: ?! z: ?
4 Z" ?# \. x" z& U+ g q+ O7 [
(国外关于迷宫的书很多,国内似乎只有吴鹤龄先生的《迷宫趣话》论述比较全面,北京理工大学出版社出版,推荐之。)
作者:
XYZ
时间:
2010-6-12 08:56
敢问lz,这些文章是转载还是原创?所取例子都是avg中的经典谜题,而我晚上又没见相关文章,故问。
作者:
shane007
时间:
2010-6-12 09:17
标题:
这个肯定是搂主原创的。
这个肯定是搂主原创的。
5 W1 [. w. F9 Y- K" V2 U% H
支持楼主,好久没见这么专业的AVG文章了。
作者:
XYZ
时间:
2010-6-12 09:22
如果是原创的那一定是大大的精华,但这截图又是哪来的呢?还请lz明示~
作者:
deducemath
时间:
2010-6-12 09:47
目前写的两篇都是原创,文章中的AVG图片都是我用Hypersnap截的,其余则来源于网络。我本人是作数学研究的,比较喜欢娱乐数学、AVG以及文学艺术类的东西,身边没有人有共同爱好。所以准备在这里发一系列文章以抛砖引玉,并借此整理一下各种思想碎片。
作者:
XYZ
时间:
2010-6-12 09:51
真棒!补上两篇精华!
1 f- r! K: z; q' [ N
1 o8 ~% @# X) i
ps:如chinaavg制作avg的话,当中的谜题还请lz可以参与,多谢先!
作者:
ocean
时间:
2010-6-13 20:34
我记得曾经有个走迷宫理论,就是永远朝着一个方向走。反正仙剑啥的迷宫我都是这么走的。。[s:77]
作者:
naptid
时间:
2010-6-22 17:48
最后一张图深奥……
0 {7 l% y7 l+ K
走迷宫傻瓜法应该是这样的:伸出一只手摸着迷宫的墙顺着一直走,手不能离墙,中间不能换手,如是方法定能出迷宫。
作者:
cielo
时间:
2010-6-27 18:56
楼主写得两篇都很赞啊!
' d5 E0 {/ D) @2 {: G
k' A* q' r3 O$ O
话说我最近正在看《玫瑰的名字》[s:101]
欢迎光临 冒险解谜游戏中文网 ChinaAVG (https://chinaavg.com/)
Powered by Discuz! X3.2